Generalized twisted group rings
نویسندگان
چکیده
منابع مشابه
Group rings satisfying generalized Engel conditions
Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1) y]=[[x ,_( n) y] , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y) ,_( n(x,y)) y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملTwisted Group Rings of Metacyclic Groups
Given a finite metacyclic group G, a central extension F having the projective lifting property over all fields is constructed. This extension and its group rings are used to investigate the faithful irreducible projective representations of G and the fields over which they can be realized. A full description of the finite metacyclic groups having central simple twisted group rings over fields ...
متن کاملOn representations of twisted group rings
We generalize certain parts of the theory of group rings to the twisted case. Let G be a finite group acting (possibly trivially) on a field L of characteristic coprime to the order of the kernel of this operation. Let K ⊆ L be the fixed field of this operation, let S be a discrete valuation ring with field of fractions K, maximal ideal generated by π and integral closure T in L. We compute the...
متن کاملStructure of Normal Twisted Group Rings
Let KλG be the twisted group ring of a group G over a commutative ring K with 1, and let λ be a factor set (2-cocycle) of G over K. Suppose f : G → U(K) is a map from G onto the group of units U(K) of the ring K satisfying f(1) = 1. If x = P g∈G αgug ∈ KλG then we denote P g∈G αgf(g)u −1 g by x f and assume that the map x → x is an involution of KλG. In this paper we describe those groups G and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2005
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2004.11.017